Projective Geometry over and the Gaussian Binomial Coefficients

نویسنده

  • Henry Cohn
چکیده

1. INTRODUCTION. There is no field with only one element, yet there is a well-defined notion of what projective geometry over such a field means. This notion is familiar to experts and plays an interesting role behind the scenes in combinatorics and algebra, but it is rarely discussed as such. The purpose of this article is to bring it to the attention of a broader audience, as the solution to a puzzle about Gaussian binomial coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OVERPARTITION ANALOGUE OF THE q-BINOMIAL COEFFICIENTS

We define an overpartition analogue of Gaussian polynomials (also known as q-binomial coefficients) as a generating function for the number of overpartitions fitting inside the M ×N rectangle. We call these new polynomials over Gaussian polynomials or over q-binomial coefficients. We investigate basic properties and applications of over q-binomial coefficients. In particular, via the recurrence...

متن کامل

AN ALGEBRAIC INTERPRETATION OF THE q-BINOMIAL COEFFICIENTS

Gaussian numbers, also called Gaussian polynomials or q-binomial coefficients are the q-analogs of common binomial coefficients. First introduced by Euler these polynomials have played an important role in many different branches of mathematics. Sylvester discovered the unimodality of their coefficients, using invariant theory. Gauss recognized the connection of the coefficients to proper integ...

متن کامل

EVALUATION OF SUMS INVOLVING GAUSSIAN q-BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

We consider sums of the Gaussian q-binomial coefficients with a parametric rational weight function. We use the partial fraction decomposition technique to prove the claimed results. We also give some interesting applications of our results to certain generalized Fibonomial sums weighted with finite products of reciprocal Fibonacci or Lucas numbers.

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

On the q - log - Concavity of Gaussian Binomial Coefficients 335

We give a combinatorial proof that k l-k-1 l + t q q q q a polynomial in q with nonnegative coefficients for nonnegative integers a, b, k, lwith a>~b and l~>k. In particular, for a=b=n and l=k, this implies the q-log-concavity of the Gaussian binomial coefficients k , which was conjectured q by BUTLER (Proc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2004